

BAA-2010-1 Edison Welding Institute (EWI) High-Speed Rail Projects

STEPHEN LEVESQUE

Who is EWI?

Mission

Advance our customers' manufacturing competitiveness through innovation in joining and allied technologies

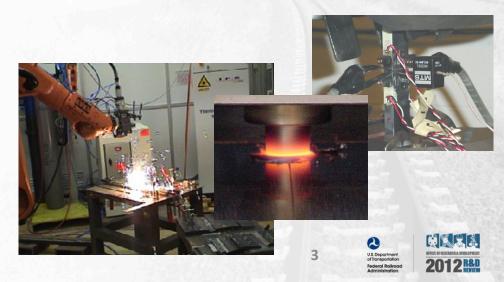
Not-for-profit 501(c)(3) organization

- > ~\$28M annual revenue and more than 130 employees
- > ~\$25M in capital equipment
- > 132,000 square foot facility in Columbus, Ohio
- ➤ More than 240 corporate members at over 1200 locations

Fundamental	Technology	Technology
Research	Development	Application
Universities, National Labs & Inventors	EWI.	Member Companies & Suppliers

Applied Research Services

Joining process capabilities


- Full range of arc and resistance
- Laser processing
- Plastics welding
- Adhesives bonding
- Micro-joining
- Friction stir welding

Supporting technologies

- Design & structural integrity
- Materials, mechanical testing
- Materials engineering
- Computational modeling
- Advanced NDE
- Weld tooling design

Allied & Emerging Tech

- Additive manufacturing
- High power ultrasonic processes
 - Additive mfg., machining, etc.
- Thermal forming
- Electro-magnetic joining
- Electro-magnetic forming/ trimming
- Forming simulation

The Use of Translational Friction Welding (TFW) for Constructing and Repairing Rails

STEPHEN LEVESQUE

The Use of TFW for Constructing and Repairing Rails

Problem

 Joining of continuously welded rail is currently performed using the flash welding or thermite welding processes. Each process has drawbacks in price and quality.

Solution

 Translational friction welding can provide welds with near parent metal strength with bonding times of less than a minute.

Project team

FWI and APCI

100 Ton Mechanical System
APCI Translational Friction Welder

History of Friction Welding

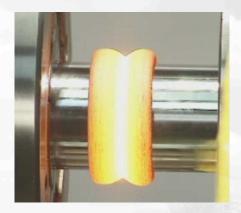
Inertia rotational welders 1960's

- One part chucked in spindle, other part in fixed tool
- Energy stored in rotating flywheel
- Parts pressed together heating and forging

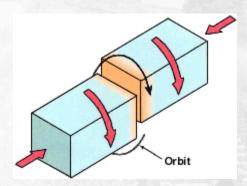
Direct Friction Drive

- Similar to Inertia but energy comes from continuous motor drive
- Stopping by brake and clutch reducing torque to parts

Orbital welding machines


Demonstrated but not known to be applied in production

Hydraulic oscillators


- No stored energy
- Very high cost compatible with only high value added assemblies
- Very large incompatible with in-field applications

Mechanical oscillators

- Fixed amplitude
- Low physical and operating cost
- Small compatible with in-field applications

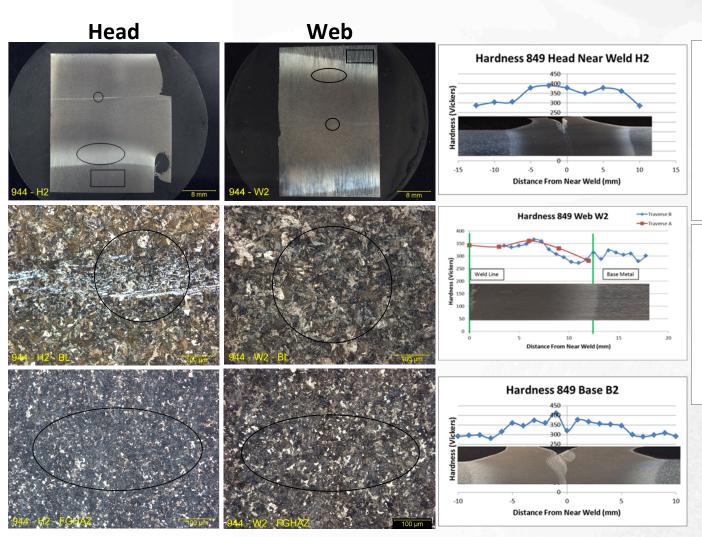
Rotating Friction Weld Courtesy of MTI.com

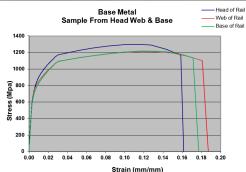
Orbital Friction Weld Concept Courtesy of TWI

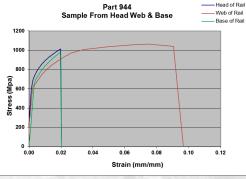
Phase 1 Results

Several welds conducted on 136RE rail

- Weld sample 944
 - Full interface weld
 - 70-80 second weld time
 - 3.8mm burnoff
- Mechanical testing
 - Tensile
 - Bend
 - Hardness
 - Metallurgical evaluation







Mechanical Test Results

Results and Conclusions

- TFW of 136RE (8597mm² / 13.33in²) rails were conducted using a direct drive/programmable cam concept machine
 - Eliminates the need for very large hydraulic oscillation systems
 - More compact equipment
 - Facilitates portable systems
 - These welds offer advantages over thermite and flash welding
- Subsequent evaluations being considered on improved welder

Developing a Reliable Method for Attaching Signaling Wires to Rail

STEPHEN LEVESQUE

Developing a Reliable Method for Attaching Signaling Wires to Rail

Problem

The present methods of rail/wire attachment have shortcomings that are creating reliability problems for the railroads.

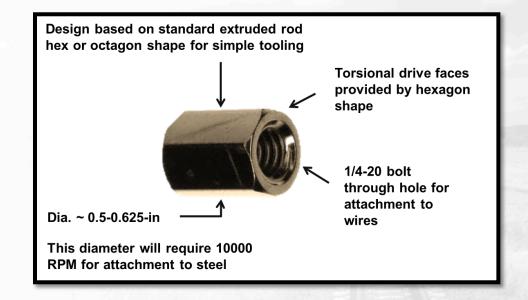
- Exothermic Weld Bonds
 - Portable, martensite possible
- Pin Brazing
 - Portable, martensite possible
- Plug Bonds
 - Mechanical solution, may loosen over time
- Bolted Contacts
 - Drilling required, excellent attachment/detachment
- Adhesive Bonds
 - Portable, multi-step procedure

Solution

Portable friction welding of signal wires to the head of the rail.

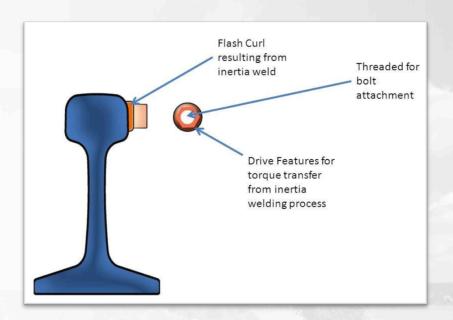
Previous Research and Railroad Interviews/Feedback

- Reviewed over 5 years of research conducted by TTCI
- Tamaroa, IL, NTSB Railroad Accident Report
- Contacted Amtrak, Union Pacific, BNSF, CSX, CP, and NS
 - Improved reliability of signal wire attachment methods still exists
 - Biggest concern for implementation is process complexity
 - Keep it simple, yet robust and field deployable
 - Preheat or additional process steps is objectionable
- Rail with UT indication near RWI joint was evaluated
 - Crack face analysis showed evidence of martensite and potential for liquid metal embrittlement



Selection of Stud Materials

- Must be forgeable in friction welding process at temp < 870 C
- Close proximity to steel in galvanic series
- > 50-ksi UTS
 - 1000-lb load
- Affordable and commercially available
- Machinability
- Surface velocity factors for friction welding



Next Steps

Develop a portable inertia welding process

- Conduct welding trials
 - 3 alloys
- Preliminary analysis
- Process robustness
- Reparability study
- Design criteria for portable equipment

Rail Base Corrosion and Cracking Prevention

STEPHEN LEVESQUE

Rail Base Corrosion and Cracking Prevention

Problem:

Rail sections succumb to bottom rusting with stresses leading to cracking and fracture

Solution:

EWI's corrosion mitigation system for steel

- Originally investigated for nuclear plant water feeds
- Appears to have rust-healing properties
- Simple application techniques
- Possibly can be used for remediation

EWI Corrosion Protection System

- Three-step, sequential topical application
 - Passivates and seals steel surface
 - Treatments can be done in a shop environment – possibly in the field
- Treated, then scribed to bare metal
 - Cycled in salt water / dry / humidity for 3 weeks
 - Initial surface rust was loose and non-adherent; little bleed
 - Underlying metal was shiny

Autoclave in Water: 250C / 72 hr

Proposed Project Plan

Team

 EWI & Volpe National Transportation Systems Center

Budget

\$265,537

Duration

9 months

Small scale studies

- Surface change or chemistry
- Corrosion studies

Medium scale studies

- Cyclic corrosion
- Fatigue life with and without corrosion
- Effect on crack formation

Large scale studies

- With and without corrosion
- Impart pre-stress resonant fatigue
- Examine results

